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Sequential Logic

● Many operations can be expressed as 
smaller sequential steps
○ Ex: Multiplication as multiple steps 

of addition

● Can use sequential algorithms to 
minimize logic usage and critical path
○ Sequential Multiplier uses one 

adder → shorter critical path
○ Much less area (one adder 

compared to N adders)
○ Tradeoff: now completes in a lot 

more cycles
○ 32 bit multiplier takes 32 cycles



Parallel Sequential

● Sequential Algorithms often take much less area than their unrolled versions
○ Multiplication Example: 1 vs n adder modules for n bits

● Smaller area enables more parallelization: instantiate more of them
○ Queue and Dispatch operations as they come to available modules
○ Modules marked busy as they compute

● With enough parallel modules, throughput can scale
○ Example: With 1 32-bit sequential multiplier:

■ Throughput is 1 multiply every 32 cycles
■ Latency is 32 cycles (from dispatch to completion)

○ Example: With 32 32-bit sequential multipliers:
■ Throughput is 1 multiply every cycle
■ Latency is still 32 cycles

Queue
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Glossary
Throughput: how often an operation completes
Latency: how long an operation takes to complete 
from being started



Pipelining
● What if we want  to improve logic without having to switch to a purely 

sequential algorithm?
● Pipelining takes existing unrolled combinational block and divide it into steps

○ Each step should have a similar delay
○ Each step gets a register on its output
○ Each step’s output register is the input to the next step

T=5 T=3 T=2 T=10

● Pros:
○ Can introduce new data much faster, throughput is improved
○ With a balanced pipeline where every stage is equal delay, n-stages 

gives n-times the throughput
● Cons:

○ Latency is not improved
○ Registers cost area

T=5 T=3 T=2 T=10

Breaking this logic into two 
stages brings total logic delay 
from 20 down to 10

Glossary
Pipelining: breaking a combinational 
path into steps by inserting registers



Example: Multiplication



Pipelined Multiplication



Pipelined Multiplication 2 



Multi Cycle Paths
● What if cannot break up an operation cleanly with flip flops?

○ Can’t pipeline or sequentialize
●  Use a Multi Cycle Path!

○ For an n-cycle path, only enable the input and output registers every n cycles
○ Benefits: 

■ Can use logic with more delay than your clock period
■ Uses less synchronization registers

Glossary
Multi Cycle Path: combinational logic path that 
occurs over multiple clock cycles

○ Drawbacks:
■ Does not get the improved 

throughput of pipelining
■ One computation at a time
■ Difficult to set up in STA
■ Easy to accidentally hide 

mistakes

● Example:
○ We want 2ns clock
○ Critical Path is 5ns
○ Use a 3-cycle path



Multi Cycle Path Clocking

● Multi Cycle Paths REQUIRE only 
activating registers every n cycles
○ Deciding something is a 

multi-cycle path is not 
enough

○ Have to manage timing 
manually with FSM, counters, 
or shift registers

● Example: 3 bit shift register 
activates flip flops every third cycle



Multicycle Path Timing

● Setup violations should only be checked N cycles out, when the output register 
is actually enabled

● Hold violations should only be checked during the launch cycle



Advanced Timing with SDCs

● Basic Setup and Hold time violations are already handled by Openlane
● More advanced timing requires use of SDC Files

○ Originally from Synopsys, but now an industry standard
■ Xilinx’s XDC format is very similar

○ Uses TCL language
● Allows defining special timing paths.
● Two main ways of interacting with design:

○ [get_ports portname] 
■ gets one or more ports from the top level module of name

○ [get_pins modulename/pinname] 
■ gets one or more pins, which is an input/output of an instantiated submodule

Glossary
SDC: Synopsys Design Constraints

Create a clock signal named “clk” with T=10ns on the top-level port “clk”
Simulate the propagation delay of the clock more accurately



Multi Cycle Paths in SDCs
● Defined from the Clock Pin of the starting register to the Data Input pin of the ending register
● Setup path sets how many cycles

○ Example: Division takes ~165 ns, we want a clock period of 10ns
○ Set to a 17 cycle path

● Hold path should be one less than the setup path
● Problem: timing is done AFTER synthesis, on the gate-level netlist

○ Have to find signal names from your netlist (.nl.v file)
○ Use wildcard * to match all signals of a multi-bit vector

Path starts at the clock pin of 

the Comb module’s a_reg pin

Path ends at the data pin of a 

register outside the Comb module

17 cycle path → 17 setup, 16 hold



False Paths
● Sometimes designs will have critical paths that are not every actually used
● Timing tools don’t know the state of muxes or logic; assume all paths are taken

○ False Paths are found by tools even though they are never reached at runtime
○ set_false_path 

■ Similar syntax to multicycle paths from previous slides

*

+
+

*

● Example: design a module that 
multiply-adds or add-multiplies
○ Never double multiplies

● Critical path appears to be double multiply
○ Timing tool doesn’t know which 

muxes are active or mutually exclusive 
● Use false path to disable the unused path

○ Total delay is now delay(+,*) rather 
than delay(*,*)

Glossary
False Path: timing path that is never utilized
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