
CPE 470 - Accelerator Optimization

Sequential Logic

● Many operations can be expressed as
smaller sequential steps
○ Ex: Multiplication as multiple steps

of addition

● Can use sequential algorithms to
minimize logic usage and critical path
○ Sequential Multiplier uses one

adder → shorter critical path
○ Much less area (one adder

compared to N adders)
○ Tradeoff: now completes in a lot

more cycles
○ 32 bit multiplier takes 32 cycles

Parallel Sequential

● Sequential Algorithms often take much less area than their unrolled versions
○ Multiplication Example: 1 vs n adder modules for n bits

● Smaller area enables more parallelization: instantiate more of them
○ Queue and Dispatch operations as they come to available modules
○ Modules marked busy as they compute

● With enough parallel modules, throughput can scale
○ Example: With 1 32-bit sequential multiplier:

■ Throughput is 1 multiply every 32 cycles
■ Latency is 32 cycles (from dispatch to completion)

○ Example: With 32 32-bit sequential multipliers:
■ Throughput is 1 multiply every cycle
■ Latency is still 32 cycles

Queue

*

*

*

*

Glossary
Throughput: how often an operation completes
Latency: how long an operation takes to complete
from being started

Pipelining
● What if we want to improve logic without having to switch to a purely

sequential algorithm?
● Pipelining takes existing unrolled combinational block and divide it into steps

○ Each step should have a similar delay
○ Each step gets a register on its output
○ Each step’s output register is the input to the next step

T=5 T=3 T=2 T=10

● Pros:
○ Can introduce new data much faster, throughput is improved
○ With a balanced pipeline where every stage is equal delay, n-stages

gives n-times the throughput
● Cons:

○ Latency is not improved
○ Registers cost area

T=5 T=3 T=2 T=10

Breaking this logic into two
stages brings total logic delay
from 20 down to 10

Glossary
Pipelining: breaking a combinational
path into steps by inserting registers

Example: Multiplication

Pipelined Multiplication

Pipelined Multiplication 2

Multi Cycle Paths
● What if cannot break up an operation cleanly with flip flops?

○ Can’t pipeline or sequentialize
● Use a Multi Cycle Path!

○ For an n-cycle path, only enable the input and output registers every n cycles
○ Benefits:

■ Can use logic with more delay than your clock period
■ Uses less synchronization registers

Glossary
Multi Cycle Path: combinational logic path that
occurs over multiple clock cycles

○ Drawbacks:
■ Does not get the improved

throughput of pipelining
■ One computation at a time
■ Difficult to set up in STA
■ Easy to accidentally hide

mistakes

● Example:
○ We want 2ns clock
○ Critical Path is 5ns
○ Use a 3-cycle path

Multi Cycle Path Clocking

● Multi Cycle Paths REQUIRE only
activating registers every n cycles
○ Deciding something is a

multi-cycle path is not
enough

○ Have to manage timing
manually with FSM, counters,
or shift registers

● Example: 3 bit shift register
activates flip flops every third cycle

Multicycle Path Timing

● Setup violations should only be checked N cycles out, when the output register
is actually enabled

● Hold violations should only be checked during the launch cycle

Advanced Timing with SDCs

● Basic Setup and Hold time violations are already handled by Openlane
● More advanced timing requires use of SDC Files

○ Originally from Synopsys, but now an industry standard
■ Xilinx’s XDC format is very similar

○ Uses TCL language
● Allows defining special timing paths.
● Two main ways of interacting with design:

○ [get_ports portname]
■ gets one or more ports from the top level module of name

○ [get_pins modulename/pinname]
■ gets one or more pins, which is an input/output of an instantiated submodule

Glossary
SDC: Synopsys Design Constraints

Create a clock signal named “clk” with T=10ns on the top-level port “clk”
Simulate the propagation delay of the clock more accurately

Multi Cycle Paths in SDCs
● Defined from the Clock Pin of the starting register to the Data Input pin of the ending register
● Setup path sets how many cycles

○ Example: Division takes ~165 ns, we want a clock period of 10ns
○ Set to a 17 cycle path

● Hold path should be one less than the setup path
● Problem: timing is done AFTER synthesis, on the gate-level netlist

○ Have to find signal names from your netlist (.nl.v file)
○ Use wildcard * to match all signals of a multi-bit vector

Path starts at the clock pin of

the Comb module’s a_reg pin

Path ends at the data pin of a

register outside the Comb module

17 cycle path → 17 setup, 16 hold

False Paths
● Sometimes designs will have critical paths that are not every actually used
● Timing tools don’t know the state of muxes or logic; assume all paths are taken

○ False Paths are found by tools even though they are never reached at runtime
○ set_false_path

■ Similar syntax to multicycle paths from previous slides

*

+
+

*

● Example: design a module that
multiply-adds or add-multiplies
○ Never double multiplies

● Critical path appears to be double multiply
○ Timing tool doesn’t know which

muxes are active or mutually exclusive
● Use false path to disable the unused path

○ Total delay is now delay(+,*) rather
than delay(*,*)

Glossary
False Path: timing path that is never utilized

References
● https://vlsitutorials.com/constraining-multi-cycle-path-in-synthesis/
● https://courses.csail.mit.edu/6.111/f2008/handouts/L09.pdf
●

https://vlsitutorials.com/constraining-multi-cycle-path-in-synthesis/
https://courses.csail.mit.edu/6.111/f2008/handouts/L09.pdf

