CPE 470 - Accelerator Optimization

Sequential Logic

e Many operations can be expressed as
smaller sequential steps

o Ex: Multiplication as multiple steps
of addition

P B [n| A

e Can use sequential algorithms to

minimize logic usage and critical path

o Sequential Multiplier uses one
adder — shorter critical path

© Much less area (one adder
compared to N adders)

o Tradeoff: now completes in a lot
more cycles

o 32 bit multiplier takes 32 cycles

Glossary

Pa ra I Iel Seq ue ntia I Throughput: how often an operation completes

Latency: how long an operation takes to complete
from being started

e Sequential Algorithms often take much less area than their unrolled versions
o Multiplication Example: 1 vs n adder modules for n bits

e Smaller area enables more parallelization: instantiate more of them
0 Queue and Dispatch operations as they come to available modules
o Modules marked busy as they compute

e With enough parallel modules, throughput can scale
o Example: With 1 32-bit sequential multiplier:
B Throughput is 1 multiply every 32 cycles Queue
B Latency is 32 cycles (from dispatch to completion)
o Example: With 32 32-bit sequential multipliers:
B Throughput is 1 multiply every cycle
B Latency is still 32 cycles

Glossary

Pl pel Ta ng Pipelining: breaking a combinational

path into steps by inserting registers

e What if we want to improve logic without having to switch to a purely
sequential algorithm?
e Pipelining takes existing unrolled combinational block and divide it into steps
o Each step should have a similar delay
o Each step gets a register on its output
o Each step’s output register is the input to the next step

e @ e o Breaking this logic into two

stages brings total logic delay
e e e from 20 down to 10
e Pros:

o Canintroduce new data much faster, throughput is improved
o With a balanced pipeline where every stage is equal delay, n-stages
gives n-times the throughput
e (Cons:
o Latency is not improved
o Registers cost area

Example: Multiplication

X3 x2 x1 x0 «<— multiplicand
* ¥3 %2 ¥1 xos=—:multiplies
X3Y0 X2Y0 X1Y0 X0Y0 | Partial products, one for each bit in
+ X3yl x2Y1 X1Y1 X0yl multiplier (each bit needs just one
+ X3Y2 X2Y2 X1¥2 X0Y2 AND gate)
+ X3Y3 X2Y3 X1Y3 X0Y3)

Pipelined Multiplication

Idea: split processing across
several clock cycles by dividing 3 4‘5
circuit into pipeline stages
separated by registers that hold

values passing from one stage to |
the next. 7
FA

Pipelined Multiplication 2

T

!

1
1O 1
FA

—

y!

FA

AI’
I\:J

+F,,|..

FA
«{4 .

i
o] K

L

FA FA
—

A2 a1

|

J
S

T

-
e FA -

b

= %

2

. Glossary
M U Itl CyC|e Paths Multi Cycle Path: combinational logic path that

occurs over multiple clock cycles

e What if cannot break up an operation cleanly with flip flops?
o Can’t pipeline or sequentialize
e Use a Multi Cycle Path!

o For an n-cycle path, only enable the input and output registers every n cycles
o Benefits:

B Canuse logic with more delay than your clock period
B Uses less synchronization registers

o Drawbacks:

B Does not get the improved Reg1
throughput of pipelining | 64 bits
m One computation at a time | |2 @ Al Deiay = bo
m Difficult to set up in STA > Rega
m Easy to accidentally hide 64 bits
mistakes j > + D QF—x—
e Example: | Reg2 >
64 bits
0 Wg .want 2n§ clock : 3 -
o Critical Path is 5ns 3
o Use a 3-cycle path CLK — D

Multi Cycle Path Clocking

Multi Cycle Paths REQUIRE only

activating registers every n cycles
o Deciding something is a
multi-cycle path is not
enough
o Have to manage timing
manually with FSM, counters,
or shift registers

Example: 3 bit shift register —

activates flip flops every third cycle

64 bits
N D Q Adder Delay = 5ns
> Reg3
En
f > + D Q
Reg2
64 bits > En
+ D Q
> En

e

3-bit Shift Register

64 bits

Multicycle Path Timing

e Setup violations should only be checked N cycles out, when the output register
is actually enabled
e Hold violations should only be checked during the launch cycle

Figure: Setup=5, Hold=4

launch edge
Source clock —-l“: .
(CLKT) sy

" Hold Setup

LT
Destination - \:’fi |

clock (CLK2) capture edge

Clock Enable _|

Ons 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns

Advanced Timing with SDCs Glossary

SDC: Synopsys Design Constraints

e Basic Setup and Hold time violations are already handled by Openlane
e More advanced timing requires use of SDC Files

O© Originally from Synopsys, but now an industry standard
m Xilinx’s XDC format is very similar
o Uses TCL language

o Allows defining special timing paths.
e Two main ways of interacting with design:
o [get _ports portname]

B gets one or more ports from the top level module of name
o [get _pins modulename/pinname]

B gets one or more pins, which is an input/output of an instantiated submodule

Create a clock signal named “clk” with T=10ns on the top-level port “clk”
Simulate the propagation delay of the clock more accurately

create clock [get ports clk]

set _propagated clock clk

Multi Cycle Paths in SDCs

e Defined from the Clock Pin of the starting register to the Data Input pin of the ending register

e Setup path sets how many cycles
o Example: Division takes ~165 ns, we want a clock period of 10ns
o Settoa 17 cycle path

e Hold path should be one less than the setup path

e Problem: timing is done AFTER synthesis, on the gate-level netlist
o Have to find signal names from your netlist (.nl.v file)
o Use wildcard * to match all signals of a multi-bit vector

iv Comb (.a_reg(a_reg), .b_reg(b_reg), .comb_out(comb_out));

set_multicycle path -setug -f [get_pins Comb.a_reg*/CLK] -to [get_pins multicycle out*df*/D]
set_multicycle path -holc -fr [get_pins Comb.a_reg*/CLK] -to [get_pins multicycle_out*df*/D]

17 cycle path — 17 setup, 16 hold .
yeep P Path starts at the clock pin of ~ Path ends at the data pin of a

the Comb module’s a_reg pin register outside the Comb module

Glossary

Fa Ise Paths False Path: timing path that is never utilized

e Sometimes designs will have critical paths that are not every actually used

e Timing tools don’t know the state of muxes or logic; assume all paths are taken
o False Paths are found by tools even though they are never reached at runtime
o set false path
B Similar syntax to multicycle paths from previous slides

e Example: design a module that
multiply-adds or add-multiplies
B o Never double multiplies
\ e Critical path appears to be double multiply
TN o Timing tool doesn’t know which
@ muxes are active or mutually exclusive
' e Use false path to disable the unused path
o Total delay is now delay(+,*) rather
than delay(*,*)

References

https://vlsitutorials.com/constraining-multi-cycle-path-in-synthesis/
https://courses.csail.mit.edu/6.111/f2008/handouts/L09.pdf

